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Use of ‘Omic’ technologies to study humans exposed to benzene
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Abstract

‘Omic’ technologies include genomics, transcriptomics (gene expression profiling), proteomics and metabolomics. We are
utilizing these new technologies in an effort to develop novel biomarkers of exposure, susceptibility and response to benzene.
Advances in genomics allow one to study hundreds to thousands of single nucleotide polymorphisms simultaneously on small
quantities of DNA using array-based technologies. We are currently utilizing these technologies to examine genetic variation in
pathways relating to biotransformation, DNA repair, folate metabolism and immune response with the goal of finding biomarkers
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of susceptibility to benzene hematotoxicity. Transcriptomics is used to measure the full complement of activated genes
or transcripts in a particular tissue at a particular time typically using microarray technology. We have applied microarra
study of global gene expression in the peripheral blood cells of benzene-exposed workers. More than 100 genes wer
as being potentially differentially expressed, with genes related to apoptosis and immune function being the most sig
affected. Initial studies employing proteomics have also shown that several proteins are altered in the serum of exposed
to control subjects and these proteins are potential biomarkers of benzene exposure. Omic technologies therefore have
potential in generating novel biomarkers of exposure, susceptibility and response to benzene.
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1. Introduction

‘Omics’ is a general term used to describe sev
rapidly growing fields of scientific endeavor, the b
known member of which is genomics[1]. Genomics is
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the study of a genome, the complete genetic comple-
ment of an individual or species, rather than the study
of single genes. The suffix-omics generally refers to the
study of a complete set of biological molecules. Just
as genomics is the study of an organisms genome, pro-
teomics is the study of an organisms entire complement
of proteins and metabolomics is the study of the com-
plete set of low-molecular weight metabolites present
in a cell or organism at any one time[2,3]. These ‘omic’
technologies allow for a large number of endpoints
to be simultaneously measured on biological samples
from human and animal subjects[4,5]. Their applica-
tion in toxicology and molecular epidemiology holds
great promise, but it should be realized that these new
technologies are discovery tools rather than traditional
assays and, as such, data generated by them should be
treated with caution. We are currently utilizing these
new ‘omic’ technologies, in an effort to discover novel
biomarkers of exposure, susceptibility and response to
benzene.

2. Using genomics to study susceptibility to
benzene toxicity

Advances in genomics allow for a large percent-
age of human genetic variation to be studied in sub-
jects participating in epidemiological studies. For ex-
ample, it is now possible to study thousands of sin-
gle nucleotide polymorphisms simultaneously on small
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3. Gene expression profiling of benzene
exposure with transcriptomics

Transcriptomics is used to measure the full com-
plement of activated genes, mRNAs or transcripts in
a particular tissue at a particular time typically us-
ing microarray technology[1,14]. Microarrays use
immobilised cDNA or oligonucleotide probes to si-
multaneously monitor the expression of thousands of
genes and obtain a view of global gene expression
(i.e. a view of all mRNA transcripts expressed by
a cell = the transcriptome)[15]. These have recently
been used to investigate variation in gene expression
in the peripheral blood leukocytes of normal individ-
uals[16] and are becoming increasingly used in toxi-
cology and molecular epidemiology[5,17,18]. We hy-
pothesized that microarrays could be used to identify
changes in gene expression caused by human expo-
sure to benzene and provide information on mecha-
nisms of benzene toxicity. We have therefore applied
microarrays to the study of global gene expression in
the peripheral blood cells of benzene-exposed workers
[19].

A potential problem with employing microarrays in
molecular epidemiology studies is the fact that mRNA
is unstable[20]. We overcome this problem by per-
forming the first step of RNA isolation in the field and
stabilizing the RNA for later analysis. We analyzed
RNA stabilized in this fashion from benzene-exposed
workers and matched controls using the most compre-
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llows for functional variant and haplotype inform
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usly. To ameliorate statistical issues arising from m

iple comparisons, current approaches focus main
ypothesis-driven studies of genes in particular p
ays rather than whole genome scans. For exam
e are examining genetic variation in pathways

ating to DNA repair, folate metabolism and immu
esponse to determine their role in susceptibility
enzene hematotoxicity. Previous studies of vari

n genes related to the metabolic activation of b
ene have shown that several of these confer su
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ell substantiated human genes allowing one to ob
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evealed that global gene expression was altered i
ipheral blood cells following benzene exposure
hat alterations in the expression of certain spe
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ublished previously[17,22], and discussed elsewhe
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4. Application of proteomics in benzene
biomarker research

In light of the fact that the human genome consists
of approximately 20–25,000 protein-coding genes, a
fraction of what was originally expected, it has be-
come clear that mammalian systems are more complex
than genes alone[23]. Alternate splicing, as well as
over 200 post-translational modifications affect a pro-
teins structure, function, stability and interactions with
other molecules[24]. A number of different proteins
are therefore likely to be expressed by a single gene.
Proteomics studies all of an organisms proteins or pro-
teome. This can contain thousands of proteins, which,
even within a given organism or cell, can vary depend-
ing on cell or tissue type, disease state and other fac-
tors. To decipher a proteome, proteomics begins with
the systematic separation and identification of all pro-
teins within a cell, tissue, or other biological sample
[2]. Although proteomics has traditionally focused on
quantitative analysis of protein expression, more re-
cently, it has expanded to include structural analysis
and identification of proteins. Application of proteomic
technologies to benzene research could provide new
biomarkers that reflect functional changes in protein
expression induced by exposure and causal changes
related to toxicity and cancer induction.

Proteomic research has recently been adapted to
high throughput, highly sensitive technologies, how-
ever, much is based on methodology that has been used
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firmed by Western blot. T cell receptor beta chain
(TCR beta), FK506-binding protein (FKBP51) and ma-
trix metalloproteinase-13 (MMP13) were found to be
up-regulated in the benzene-exposed workers. The au-
thors concluded that TCR beta in plasma could be
used for the early detection of exposure to benzene.
This requires confirmation in other studies of benzene-
exposed workers.

Despite its utility, 2-DE is not sensitive enough for
low abundance proteins, which may be masked by the
presence of high abundance proteins, or for the detec-
tion of low-molecular weight or membrane proteins,
highly acidic or alkaline proteins. These limitations can
be overcome by emerging technologies, particularly
surface enhanced laser desorption/ionisation (SELDI),
which combines chip technology and MS[25]. SELDI
based protein chips utilize affinity capture to bind pro-
teins with unique biochemical properties which allow
the rapid capture, purification and characterization of
protein directly on the chip. The SELDI process does
not require sample purification or labeling. A crude
sample may be applied directly to the chip, followed
by washes to remove unbound protein, etc[27,28]. The
laser is then applied to the bound sample directly on the
chip, which then sends ions through the time of flight
tube and is thus called SELDI–TOF–MS. A mass spec-
trum is generated, and may be compared with available
databases.

In recent studies by our group, serum samples from
benzene-exposed workers and matched controls were
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ed by matrix-assisted laser desorption ionization/t
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o Ciphergen ProteinChip® Arrays. Protein expressio
atterns were detected by SELDI–TOF–MS as
cribed above. We found that several proteins were
istently altered in exposed compared to control
ects (unpublished data). Identification of these prot
s currently underway.

. Conclusion

Omic technologies have significant potential in g
rating novel biomarkers of exposure, susceptib
nd response to benzene. Several genetic poly
hisms have already been linked with susceptibilit
enzene toxicity and genomic approaches are b
sed to explore this issue further. Gene expression
ling or transcriptomics may identify novel patterns
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gene expression associated with benzene exposure and
provide insights into the mechanism of benzene toxic-
ity. Initial studies employing proteomics in our lab and
others have also shown that several proteins are altered
in the serum of exposed compared to control subjects
and these proteins are potential biomarkers of benzene
exposure and response.
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